Properties of B_c Meson

On behalf of DØ Collaboration

Dmitri Tsybychev, SUNY at Stony Brook, PANICO5, Santa Fe, New Mexico

- \blacksquare B_c is ground state of \overline{b} c system
 - Unique system with two heavy quarks of different flavor
 - Probes heavy-quark theories in the region between the cc and bb
 - o m_{exp} = 6400 ± 390 ± 130 MeV/c² (first observation Bc \rightarrow J/ψμX CDF Run I, PRD 58, 112004)
 - o m_{exp} = 6287.0 ± 4.8 Mev/c² (CDF Run II, $B_c \rightarrow J/\psi \pi X$)
 - $_{\text{exp}}$ =0.46^{+0.18}_{-0.18}± 0.03ps
 - o $m_{theor} = 6304 \pm 12^{+18}$ Mev/c² (lattice QCD, PRL 94, 172001)
 - $_{\rm o}$ $\tau_{\rm theor}$ =0.4~1.4 ps

B_c Production at Tevatron

- \blacksquare B_c production cross section:
 - o qq, gg \rightarrow B_c + b + \overline{c}
 - Sum of production cross sections of ground and excited states
 - Contribution from color-singlet and color octet states
- σ $\sigma(B_c)/\sigma_{inel} \sim 10^{-6}$
 - Trigger is important

Decays of B_c

- B_c decays through weak interactions
 - o b-quark decay with a spectator c quark
 - $B_c \rightarrow J/\psi \mu X, B_c \rightarrow J/\psi \pi X$
 - Observed at Tevatron
 - J/ψ final state is distinctive signature, useful for trigger and reconstruction
 - o c-quark decay with a spectator b
 - O The annihilation decays bc → lv,cs,us
 - O Charge conjugation assumed
- Searched for B_c in 210 pb⁻¹ inclusive J/ψ data sample collected by DØ

DØ Detector

- Excellent coverage of Tracking and Muon Systems
 - o Forward muon system with $|\eta|$ < 2 and good shielding
 - 60% pure at L1 trigger
 - 4-layer Silicon and 16-layer Fiber Trackers in 2 T magnetic field

Bc signal

- Use tri-muon final state
 - J/ψ→μμ and tight third muon form a vertex
 - o 231 J/ψ μ X events selected
- Include contributions to signal from
 - Feed-down from $B_c \to \psi(2S) \mu X$
 - o $B_c \rightarrow J/\psi \mu \pi^0 X$
- B_c not fully reconstructed (neutrino)
 - Estimate from control J/ψ + track sample
 - Prompt J/ψ + random or fake muon (prompt background)
 - J/ψ from B decay + random or fake muon (heavy flavor background)

DØ Observation of $Bc \rightarrow J/\psi \mu X$

- Plot invariant mass of three muons and pseudo-proper time
 - Not exclusive reconstruction
 - Use MC to get mass template shapes
- Background probability density is obtained from control sample
 - o T < 0 − prompt background
 - Symmetric distribution about 0 subtracted off to get
 - o T > 0, 2 heavy flavor background
- Clear excess at higher mass
- Do likelihood fit to pseudoproper time distribution in invariant mass bins
- Number of B_c candidates: 95 ± 12 (stat.) ± 11 (sys.)

Fit Results

Mass:

 $5.95^{+0.14}_{-0.13}$ (stat.) \pm 0.34 (syst.) GeV/c²

Lifetime:

 $0.448^{+0.123}_{-0.096}$ (stat.) ± 0.12 (syst.) ps

Main systematics

- Mass: signal sample composition, MC signal modeling, fraction of prompt background
- Lifetime: Bias from vertexing algorithm, fraction of prompt background

Heavy Flavor Background Check

- Expect $B_c \rightarrow \psi(2S)$ μ X be dominated by background
- $B_c \rightarrow \psi(2S) \mu X \sim 5 \text{ to } 100$ times smaller than $B_c \rightarrow$ $J/\psi(2S) \mu X$
 - o Compare $B_c \to \psi(2S) \mu$ sample to $B_c \to \psi(2S)$ track sample
 - Test of heavy flavor background

Heavy flavor component

Counting Analysis

- Perform a simple counting experiment
 - Normalize background from the control sample
 - Use region with pseudo-proper time > 2 ps
 - 183 candidate events in heavy flavor component
 - 65 ± 26 signal events

Systematic Uncertainties

Source	Mass (GeV/ c^2)	Lifetime (ps)	# Signal
Limited background statistics	0.06	0.013	3.0
Fraction non-resonant $B_c^+ o J/\psi \mu^+\pi^0 u$	0.14	0.022	6.7
Feed-down fraction from $B_c^+ o J/\psi(2S)\mu^+\nu$	0.08	0.017	5.4
MC signal modeling: phase space vs. ISGW	0.16	0.023	4.4
MC signal modeling: HQET vs. ISGW	0.06	0.007	1.8
$B_c \; p_T$ spectrum	0.05	0.004	0.8
Momentum binning	0.14	0.062	0.4
Alignment and primary vertexing algorithm	0.08	0.085	3.1
Vertex algorithm selection criteria	0.06	0.028	_
Prompt/heavy relative bkgd fraction	0.15	0.036	_
Total systematic error	0.34	0.121	10.7

Other Properties

- Fragmentation process $b \rightarrow B_c + \overline{c}$ dominates production
 - Charm quark should form weakly decaying charmed hadron in vicinity of B_c

- Measured probability to have muon within $\phi \pm 90^{\circ}$ of B_c candidate
 - \circ 5 ± 2 % for signal sample
 - 1% for background sample

Conclusions

- Observed $B_c \rightarrow J/\psi \mu X$ at DØ
- Preliminary results
 - o Number of candidates: 95 ± 12 (stat.) ± 11 (syst.)
 - o Mass: $5.95^{+0.14}_{-0.13}$ (stat.) ± 0.34 (syst.) GeV/c²
 - o Lifetime: $0.448^{+0.123}_{-0.096}$ (stat.) ± 0.12 (syst.) ps
- Analysis is repeated with much bigger dataset
- Significant progress in $B_c \rightarrow J/\psi \pi$ channel